淘宝店铺 阿里店铺 服务热线:18968044126

> 行业动态 > 行业动态 > 锂电正极材料行业深度报告:富锂锰基氧化物,层状结构正极寻梦
锂电正极材料行业深度报告:富锂锰基氧化物,层状结构正极寻梦
来源:未来智库 2022-12-12 186
  • 收藏
  • 管理

    (报告出品方/作者:中信建投证券,朱玥,张亦弛,马天一)

    一、锂电正极材料,所有体系都未停下脚步

    1、锂电池能量密度的决定因素:电极容量与极间电压

    锂离子电池中,不同正负极活性物质的比容量和对锂电压不同,辅助组元的用量不同,多因素共同影响了 电池的质量能量密度

    可以看出,更高的正极比容量、更高的负极比容量和更高的电池电压(以及更少的辅助组元),是高能量密 度电池的理论实现路径。

    根据储锂的基本原理不同,正负极材料都可以分为相变材料和插层材料两大类。一共四大类材料的比容量 和对锂电压范围归:插层型材料总体而言比容量偏低,而相变型材料比容量偏高;正极材料比容量偏 低,负极材料比容量偏高。

    当前规模化应用的正负极材料主体是插层型材料。部分相变型负极材料,以硅为代表,通过掺杂形式获得 了少量实际应用(可参见研究报告:负极硅碳,风语黎明);而相变型正极材料,包括氯化物、硫化物、氟化物、 碘化物等,虽然科学研究努力不断,但受限于材料动力学因素、综合性能权衡限制等,实际应用成熟度仍然较 低(可参见研究报告:锂硫电池:仰望星空到脚踏实地)。质优价廉的石墨负极,其容量即可实现接近 370mAh/g, 遑论硅基负极;而相对电压较高(均值 3V 以上)的正极体系容量仍然在 300mAh/g 之内。这也使得整个锂电池 的活性物质体系内部,正极容量不足、影响电池综合性能的问题显得尤为突出。

    富锂锰基正极材料的首次充电曲线可以观察到两个不同的区域。

    在 4.5V 以内,传统层状结构 LiMO2 中的镍和钴化合价升高,同时常规层状结构中的锂离子从正极脱出嵌 入负极,Li2MnO3 层中的部分锂离子也脱出进入层状结构(事实上发挥补锂剂作用)等。

    在 4.5V 以上出现的新平台则被多数研究者归因于 Li2MnO3 层(和该层在高电压下体现出电化学活性相应) 的贡献,包括部分锰的变价,部分结构氧流失为氧气并形成氧空位,-2 价氧失电子变为-1 价氧提供电荷补偿, 锂离子从过渡金属层中脱出形成 Li2O 并使得材料结构重排为传统层状结构,锂、锰、氧有复杂的电荷补偿关系 等。也有实验研究结果同时验证了上述理论归纳的“部分正确性”。

    富锂锰基正极继续循环,突出的特征是放电平均电压持续降低。有研究工作认为,材料体系会在锂、氧脱 出基础上,先后发生过渡金属持续从层状结构中脱出(甚至进入电解液)、形成不可逆的尖晶石相等过程,该过 程影响了放电平均电压。(如果过渡金属中心离子持续脱出,正极的容量也会受到影响。)另外,晶体结构的变 化会造成应力累积。

    最后,也有研究工作旗帜鲜明地认为,充电的电压平台是因为 Li2MnO3 表面活动(氧气析出、碳酸盐分解 等)导致的,体相中并不存在晶格氧的氧化还原。换言之,Li2MnO3 起到的是某种“催化”作用,而非晶格氧 的氧化还原“贡献”作用。研究者还以一系列表征结果说明,富锂材料晶格氧的氧化还原反应和传统层状材料 晶格氧的氧化还原反应光谱特征相近,这个特征 Li2MnO3 并不具备。

    所以,和磷酸铁锂、三元材料、锰酸锂不同,也和磷酸铁锰锂、四元正极、镍锰酸锂不同,我们必须在基 础理论尚未完备、核心科学工作仍在进行的条件下,研究分析富锂锰基正极材料的合成、改性,及性能表现与 优化的手段,试图获得材料结构稳定可控,容量、电压、循环、倍率性能可以满足应用需要的富锂锰基正极。

    而所有在富锂锰基正极材料研究过程中付出努力、取得成果的学者,无疑也是真的勇士。

    3、合成、改性和体系适配:在三元正极巨人的肩膀上

    就晶体结构、主要成分而言,富锂锰基正极和三元正极的近似度很高。其合成手段包括固相法、共沉淀-煅 烧法、溶胶凝胶-煅烧法、水热法、自蔓延燃烧法等,但鉴于富锂锰基正极的结构复杂,内部过渡金属原子并未 均处于化学等同位置,各类液相混合手段是适宜的。

    有研究认为,在液相法中,水热合成的效果优于溶胶凝胶优于共沉淀。

    另外,富锂锰基正极材料的性能和粒径也有关联。1 微米以下的颗粒相对而言容量更高。

    综合比较几种正极材料,富锂正极的能量相关性能最高,其他性能指标高镍三元、尖晶石镍锰酸锂各有优 势。

    研究者论述,使用油酸处理富锂锰基正极材料,可以用合适浓度的氢离子取代部分锂,获得锂缺陷;同时 油酸覆盖在正极表面,又会形成均一的有机包覆层。在后续煅烧过程中,过渡金属离子会扩散至锂位,形成过 渡金属离子缺陷;油酸在空气中碳化,又会形成氧缺陷,这样得到缺陷对;缺陷对之上会获得尖晶石 Li4Mn5O12 相;尖晶石相之上是碳化包覆层。这样,正极材料性能表现得到改善。

    经油酸处理后,样品的首次充电容量虽有下降,但放电容量提升显著,可以均稳定在约 300mAh/g;1C 条 件下循环 200 次,容量从 276mAh/g 衰减约 10%;5C 条件下循环 200 次,容量从 250mAh/g 衰减约 10%。在我 们列举的若干改性富锂锰基正极材料研究成果中,此工作的性能指标尤其是倍率性能非常出色。

    另外,富锂锰基正极材料高容量对应的高截止电压也需要耐压电解液体系予以适配。

    如 2022 年发表在 Advanced Functional Materials 上的论文 Elucidating the Effect of Borate Additive in High-Voltage Electrolyte for Li-Rich Layered Oxide Materials 论述,氟代酯类溶剂,砜类溶剂的抗氧化性比常规 碳酸酯类更强。

    另外,LiBOB 二草酸硼酸锂作为添加剂,其中的二草酸硼酸根可以消耗掉体系中的痕量氟化氢,电池循环 过程中生成少量的二氟草酸硼酸锂 LiDFOB 和四氟硼酸锂,对电池的综合性能有益。

    我们可以看出,虽然材料基本原理远未完美,但是合成、改性及体系适配方面的努力也将富锂锰基正极材 料的性能提升到了“值得继续进行多方面探索,最终也许可用”的程度。(报告来源:未来智库)

    从实施例来看,用 3%质量分数的磷酸根聚阴离子复合锰盐包覆 0.5Li2MnO3·0.5LiNi0.4Mn0.4Co0.2O2 正极,样 品的首效、倍率和循环性能(实施例未说明 100 次循环采用的倍率)都获得了优化。包覆后富锂正极样品的比 容量性能出色,可能需进一步优化的内容包括平均对锂电压及正极材料成分等。

    公开于 2017 年的专利 CN106711439A 描述了 Mg、Ti 复合掺杂富锂锰基正极材料的制备方法。在共沉淀反 应前半段加入 Ti 元素,在共沉淀反应的后半段加入 Mg 元素,使得 Ti 元素主要分步于体相,Mg 元素主要分布 于前驱体的表层。研究者认为,这样一方面可以降低掺杂元素的掺杂量从而提高克容量,另一方面可以充分发 挥两种元素的功能从而达到效果的叠加,减小共掺杂时元素的相互干扰。同时,制备方法简单,易于产业化。

    从实施例来看,总成分为 Li1.17Mn0.55Ni0.16Co0.08Mg0.003Ti0.016O2 的正极在 0.1C 倍率下取得了约 270mAh/g 的 放电容量;0.5C 倍率下 100 次循环后容量保持约 80%,且电压未发生明显退降。

    公布于 2016 年的专利 CN105810933A 描述了一种钼掺杂氧化锌包覆富锂锰基正极材料的制备方法。其先按 照钼元素和锌元素摩尔比为 1:10-25,将可溶性钼盐与可溶性锌盐溶解在水中形成水溶液,然后滴入聚乙烯吡 咯烷酮进行搅拌; 再加入富锂锰基正极材料后进行恒温搅拌,制得前驱体溶液;干燥后,置于马弗炉中进行煅 烧,得到钼掺杂氧化锌包覆的富锂锰基正极材料。研究者认为,该方法有效的隔离电极与电解液的接触并且改 善了电极材料与电解液间的导电性能及离子传输性能,从而改善了富锂锰基正极材料的容量保持率及循环性能。

    从实施例来看,包覆后的正极 0.3Li2MnO3·0.7LiNi0.5Mn0.5O2 的高倍率首次放电容量、循环寿命表现均占优。

    从实施例来看,研究者选用成分为 Li[Li0.22Ni0.17Mn0.61]O2 的富锂锰基正极基体,在其表面液相包覆氧化锂氧化硼快离子导体,再经退火,取得正极材料。

    该正极材料在 0.1C 倍率下的放电比容量达到 297mAh/g,并且首次效率高达 89%,循环 50 次以后保有 98.8%。 1C 倍率下放电比容量约 240mAh/g;高倍率 2C 条件下,放电比容量仍可保持 200mAh/g。

    LG 也布局了少量富锂锰基正极专利,如描述固体电解质包覆富锂正极的专利 CN110383543A,描述三氧化 钨包覆富锂正极的专利 CN110383542A,描述贫锂过渡层包覆富锂正极的专利 CN110383541A 等。遗憾的是, 相应性能参数多以相对值列示,而未给出比容量-电压曲线甚至未给出比容量绝对值等更关键的性能信息。

    万向公布于2021年的专利CN113363474A描述了用溶胶凝胶法形成磷酸锰锂包覆层包覆富锂锰基正极的方 法。其实施例显示:富锂正极材料 Li[Li0.2Mn0.54Co0.13Ni0.13]O2 通过锰、钴、镍的醋酸盐共沉淀,再混合碳酸锂煅 烧制得;磷酸锰锂包覆层通过醋酸锰、磷酸二氢铵、醋酸锂、柠檬酸结合正极基体水浴并烘干煅烧制得。包覆 质量分数 1%。

    0.1C 倍率下循环,部分样品在 100 次循环后可保持约 200mAh/g 的容量,但是电压仍在退降。2.5C 倍率 500 次循环后,样品容量从约 125mAh/g 降低至不足 100mAh/g。我们估计,除富锂正极基体倍率性能上限有限外, 磷酸锰锂相对不足的导电性也可能影响了倍率性能发挥。

    万向也有将富锂和三元正极复合的专利研究,样品循环 700-800 周容量保持率还在 80%以上,但未给出电池能量密度超过 240Wh/kg 的实施例。有关研究见于 CN104300137A。

    公布于 2015 年的专利 CN104282941A 描述了在电解液体系中添加助剂,改善电池循环寿命的方法。所述助 剂为三氟甲磺酸甲酯与 4,4′-磺酰基双苯胺。同时,优选的锂盐是六氟磷酸锂和二草酸硼酸锂,研究者认为草 酸根可抑制锰溶出。部分实施例显示了对应电池 500 次循环后约 90%的容量保持率,但正极容量和电压平台变 化情况、电池能量密度等技术指标未给出。

    当升的获授权于2020年的专利CN107180959B描述了钠掺杂的富锂锰基正极材料的制备方法。研究者描述, 钠均匀分布在正极颗粒中,可以提升正极材料的容量和循环性能。

    从实施例来看,研究者以氯化锰、硫酸镍、氯化钴为原料,碳酸钠为沉淀剂及掺杂剂,合成均匀掺钠的富 锂正极前驱体。再混合氧化锂,空气气氛下煅烧,得到化学式为 0.4Li2MnO3·0.6LiNi1/3Co1/3Mn1/3O2,钠掺杂量 0.25%的富锂正极材料。该材料平均粒径约 10um,约 0.06C 首次放电比容量 270mAh/g 以上,在约 0.15C、2.0-4.6V 条件下循环 50 次容量保持接近 99%。

    获授权于 2019 年的专利 CN108269996B 描述了具备梯度成分分布的富锂锰基正极材料的合成方法。研究者 认为,根据碳酸盐体系下不同元素的沉淀规律进行掺杂元素优化分配,在前驱体制备过程中,通过调整不同沉 淀阶段掺杂元素含量来保证材料内部晶体结构达到最优化,可以解决现有富锂锰基材料的电压降问题,并提升 倍率性能。

    从实施例来看,所述正极的过渡金属源为碳酸锰、钴和镍;稳定剂是硫酸氧钛,因为有分罐持续加入可获 得浓度梯度;加入碳酸钠沉淀剂,控制 pH 和温度,即可得到钛梯度掺杂的前驱体。该前驱体混合氢氧化锂煅 烧,即可取得平均成分为 Li[Li0 .2Mn0 .53Ni0 .13Co0 .13Ti0 .01]O2 的富锂锰基正极。在 45 度高温、1C、2.0-4.6V 电压 条件下循环,梯度正极材料的容量保持率显著由于对比例。遗憾的是比容量绝对值专利未披露。

    公布于2018年的专利CN108736002A描述了一种局部碳包覆型富锂固溶体硫氧化物正极材料及其制备方法。 和常规富锂锰基正极不同,该材料的“含锂层状结构”成分是 Li2 aMnS3,用硫取代了氧。

    从实施例看,正极样品的锂含量甚至高达 1.56(常规正极材料对应化学计量比以 1 计即可),所以首次可逆 比容量高达 360mAh/g,首次库伦效率超过 90%,50 次循环容量电压保持率超过 90%,中值电压保持率超过 95%。 当然,硫可能发生溶解,研究者认为碳包覆即一定程度上缓解了该溶解过程。

    3、小结:无机非金属氧化物“兵器谱”,和高性能正极的期待

    从典型的富锂锰基氧化物正极专利来看,无机非金属氧化物粉体配方确定、合成和改性的各种手段几乎无 一缺席。(分成分、步骤)共沉淀,材料表面液相处理,固相煅烧和退火处理,甚至碳源热分解气相包覆等等, 都有所体现;和富锂正极相适应的电解液体系也有相关研究。

    同时,我们也发现尚有若干实践问题相关专利暂未给出有效的解决办法:富锂锰基正极材料比容量得到有 效提升,但其首次循环的中值电压仍然较低;循环过程中电压和比容量退降;充放电电压差值较高;倍率性能 一般;合成及改性工艺比常规三元正极复杂。

    如果高容量高电压富锂锰基正极材料得以有效实用化,意即我们取得约 250mAh/g 或更多可逆比容量、3.6V 中值电压、2C 或更高倍率的,具有预锂化能力的正极材料——该材料可以有效提升以能量密度为首的电池性能, 而且因为锰含量较多(相比于钴酸锂、高镍三元正极)还可能具备成本优势,则其市场空间理论上可以替代三 元正极和部分铁锂正极,甚至创造出更多增量。但是在科学原理尚未完全明晰、工程技术尚无大幅进展的今天 进行推断,这一进程或许还尚需较长时日。如果有企业宣称在富锂正极材料研发方面取得了开创性进展,则综 合技术指标的详尽披露、规模化生产的复杂度评估(如果不考虑科学本质的清晰解释的话)应该是取得外界信 赖的必备条件。无论如何,富锂正极搭配高锂含量负极,无疑是高(质量)能量密度锂离子电池的关键性期待 之一。

    最后,富锂锰基材料也有在相对较低截止电压下(如 4.4V 以下)实用化的可能性。作为可逆比容量超过 220mAh/g,对锂电压约 3.4V 的正极材料,如果合成、改性的工艺复杂度不高,且电池倍率性能、循环寿命、 能量循环效率等可接受,则富锂正极也有可能成为相对低成本正极材料的选项之一(也需考虑负极、电解液等 的单位用量和价格变化等,进行综合判断)。

    我们对不同正极材料电池的能量密度估计如下:富锂正极对应电池的能量密度是其竞争优势。

    我们对不同类型电池单位能量的正极等效金属元素用量估计如下:富锂正极的锂用量不低,昂贵过渡金属 元素用量低(材料成分以 Li1.2Ni0.16Co0.08Mn0.56O2 进行估计)。

    (本文仅供参考,不代表我们的任何投资建议。如需使用相关信息,请参阅报告原文。)

    精选报告来源:【未来智库】。未来智库 - 官方网站

    地址:浙江杭州市拱墅区祥茂路6号香槟之约园D座313

    总机:0571-86091286

    客服电话:18968044126

    行业动态

    行业动态 联系我们
    智钛公众号 智钛小程序
    浙ICP备2022018566号-2 | 网站地图 | 地图导航 | 智钛净化 | 纳米材料 | 技术支持:脚本设计