猜你喜欢
锂离子电池具有能量密度高、循环寿命长、自放电小、无记忆效应和环境友好等众多优点,已经在智能手机、智能手环、数码相机和笔记本电脑等 消费电子领域中获得了广泛地应用,具有最大的消费需求。
同时,它在纯电动、混合电动和增程式电动汽车领域正在逐渐推广,市场份额的增长趋势最大。另外,锂离子电池在电网调峰、家庭配电和通讯基站等大型储能领域中也有较好的发展趋势(图1)。
锂离子电池主要由正极、负极、电解液和隔膜等部分组成,其中负极材料的选择会直接关系到电池的能量密度。金属锂具有最低的标准电极电势(−3.04V,vs.SHE)和非常高的理论比容量(3860mAh/g),是锂二次电池负极材料的首选。然而,它在充放电过程中容易产生枝晶,形成“死锂”,降低了电池效率,同时也会造成严重的安全隐患, 因此并未得到实际应用。
直到1989年,Sony公司研究发现可以用石油焦替代金属锂,才真正的将锂离子电池推向了商业化。在此后的发展过程中,石墨因其较低且平稳的嵌锂电位(0.01~0.2 V)、较高的理论比容量(372 mAh/g)、廉价和环境友好等综合优势占据了锂离子电池负极材料的主要市场。此外,钛酸锂(Li4Ti5O12)虽然容量较低(175 mAh/g),且嵌锂电位较高(1.55V),但是它在充放电过程中结构稳定,是一种“零应变材料”, 因此在动力电池和大规模储能中有一定的应用,占据着少量的市场份额。随着人们对锂离子电池能量密度的追求越来越高,硅材料和金属锂将是负极材料未来的发展趋势(图2)。
负极材料的粒度主要是由其制备方法决定的。例如,中间相碳微球(CMB)的合成方法为液相烃类在高温高压下的热分解和热缩聚反应,可通过控制原料的种类、反应时间、温度和压力等来调控CMB的粒径。石墨标准中对其粒径参数的要求分别为:D50(约20μm)、Dmax(≤70μm)和D10(约10μm),而钛酸锂标准中要求的D50明显小于石墨 (≤10μm,表4)。
2.4负极材料的密度粉体材料一般都是有孔的,有的与颗粒外表面相通,称为开孔或半开孔(一端相通),有的完全不与外表面相通,称为闭孔。在计算材料密度时,根据是否将这些孔体积计入,可分为真密度、有效密度和表观密度,而表观密度又分为压实密度和振实密度。
真密度代表的是粉体材料的理论密度,计算时采用的体积值为除去开孔和闭孔的颗粒体积。而有效密度指的是粉体材料可以有效利用的密度值,所使用的体积为包括闭孔在内的颗粒体积。有效体积的测试方法为:将粉体材料置于测量容器中,加入液体介质,并且让液体充分浸润到颗粒的开孔中,用测量的体积减去液体介质体积即得有效体积。
在实际应用中,生产厂家更为关心的是材料的表观密度,它主要包括振实密度和压实密度。振实密度的测试原理为:将一定量的粉末填装在振实密度测试仪中,通过振动装置不断振动和旋转,直至样品的体积不再减小,最后用样品的质量除以振实后的体积即得振实密度。
而压实密度的测试原理为:在外力的挤压过程中,随着粉末的移动和变形,较大的空隙被填充,颗粒间的接触面积增大,从而形成具有一定密度和强度的压胚,压胚的体积即为压实体积。一般地,真密度>有效密度>压实密度>振实密度。
负极材料的密度会直接影响到电池的体积能量密度。对于同一种材料,其压实密度越大,体积能量密度也越高,因此标准中对各项密度的下限值均做出了要求(表5)。其中,不同石墨材料的真密度范围相同,均为 2.20~2.26g/cm3 ,这是因为它们从本质上讲都是碳材料,只是微结构不同而已。另外, 由于Li4Ti5O12的初始电导率较低,通常需要通过碳包覆来提升电池的倍率性能,但与此同时,相应的振实密度有所下降(表5)。
然而,SEI膜的生成也 会造成较大的不可逆容量,降低了首次库仑效率,特别是对于全电池而言,较低的首次库仑效率意味着有限锂源的损失。相比之下,Li4Ti5O12的嵌锂电位(约1.55V)较高,不会在首周生成SEI膜,因此首次效率比石墨高(≥90%,表11),高质量Li4Ti5O12 的首次效率可以达到98%以上。另外,电池的首周可逆比容量可以在一定程度上反映材料在后续循环中的稳定容量,也具有重要的实际意义。
03对今后标准制定工作的建议近年来,在国家的大力支持下,锂离子电池行业发展势头良好,负极材料迎来了前所未有的机遇。由于新能源行业对锂离子电池能量密度的要求越来越高,石墨和钛酸锂材料的性能正在不断地优化。与此同时,下一代锂离子电池负极材料——硅,也正在逐步开始商业化。因此,需要对原有的负极标准进行升级,甚至是编制新的标准,从而促进我国锂离子电池行业的健康和可持续发展。
----END----