猜你喜欢
日常生活中,我们都在有意或无意间用过紫外线杀菌,最常见的例子就是晒被子。有专家认为,天气暖和了,新冠病毒可能自然而然就消失了,部分也是基于紫外杀菌这一原理。那么紫外线是否真的可以杀死病毒呢?事实上,除了紫外光,可见光和红外光也具有强大的杀菌本领。那么,这些光是如何杀死细菌、真菌和病毒等病原体的?这些光介导的灭菌技术又可以应用于哪些场景呢?
撰文 | 徐颖
近年来,研究人员开发了一系列光介导的灭菌技术,既能用于日常生活中的各种场景,也能用来灭活病毒制备疫苗,还可以直接用于创口的治疗等方面。根据前人的研究[1]来看,这些技术可以针对细菌、真菌和病毒等各种类型的生物武器。因此,对于最近正在各国肆虐的新冠病毒来说,这些技术理应也能够在新冠病毒的防御和治疗等方面发挥重要作用。
与化学消毒剂、杀菌剂和抗感染药物相比,光具有很多优点:
对环境友好,无污染。
相对安全无毒。
不会对周围的生物介质造成过度的损伤,无论是无机的、有机的还是有生命的。
生产成本相对较低。
反应速度很快,通常仅需几秒钟。
可应用于人类皮肤、伤口、粘膜和其他暴露部位,而不会造成不应有的伤害。
尚没有报道表明,微生物细胞对基于光的抗感染疗法会产生抗性。
我们在这里介绍几种光介导的杀菌方式,希望对新冠病毒的预防和治疗等工作有所启发。
不同波长的光及其作用
首先,我们平日所说的光由哪些“成分”组成?其中哪些对人体有损害作用,哪些善加利用将有利于杀菌、除菌等工作?
光可以根据其波长范围和与物质作用时能否产生电离效应进行分类,按波长的升序排列可将其分成γ射线、X射线、紫外线、可见光、红外线、微波和无线电波。波长越短,频率越高,能量也越大。由于光的电磁特性,它与物质相互作用时能够引起各种现象。例如,波长小于100纳米的光波在与物质相互作用时,会导致物质原子发生电离;随着波长的增加,光波所携带的能量虽不足以引起电离作用,但可以激发电子,使物质处于高能量状态,并诱导其分子结构发生变化。
图1:电磁光谱及其对各种微生物的生理作用
由于基于紫外线、可见光和红外线的灭菌技术在日常生活、科学研究和医疗中应用较广,在这里我们主要从这几个方面进行展开。
1 紫外线的杀菌原理和应用
紫外线(ultraviolet,UV)的波长范围介于X射线(≤100纳米)和可见光(>400纳米)之间,大约在100-400纳米的范围内。根据紫外线与分子的相互作用,又可将其分为四种类型,这几种类型的紫外线对物质产生的生理效应有所差异。
·
真空紫外线 (vacuum UV, VUV)
波长范围在100-200纳米。在低剂量下,它也能与氧原子及有机分子发生即时反应,是有害的。
·
超短紫外线UVC波长范围在200-280纳米之间的光。UVC能够完全被大气层吸收,并没有天然UVC射线照射到地球表面。位于这个波段的紫外线具有杀菌作用。人们平常所说的 “紫外杀菌”,其中的有效“成分”就是指UVC[2],可以通过人造光源(例如UVC LED或汞灯)获得。
UVC的穿透能力较弱,大部分会被人体皮肤的角质层和表皮层吸收,只有极少一部分会打到真皮层,而紫外线只有作用到真皮层才会引起皮肤细胞癌变,所以通常认为UVC对人体皮肤影响不大(婴儿以及对UVC过敏的人群除外)。然而,由于眼睛没有角质层保护,UVC 对人眼有伤害作用,所以在使用UVC消毒房间时,人尽量不要进入其中,若必须进入的话,一定要配戴专门的防护眼镜和防护服。
·
远紫外线UVB
波长范围在280-315纳米之间的光。这个波段的光可以引起皮肤的“太阳灼伤”,与光致癌和光老化有关,涂抹防晒霜的目的主要是为了对抗它。
·
近紫外线UVA
波长范围在315-400纳米之间的光。其中波长较短的UVA(315-340纳米,UVA1)由于能够产生活性氧,也会对皮肤产生有害影响。它的穿透力很强,可以穿透大部分透明的玻璃及塑料,也可以直达肌肤真皮层,破坏弹性纤维和胶原蛋白纤维,将皮肤晒黑。
在各种波段的紫外线中,仅超短紫外线UVC具有杀菌消毒的作用。当用超短紫外线照射细菌、病毒等微生物时,其中波长为254纳米的超短紫外线能够被这些微生物的核酸中的嘧啶和嘌呤吸收,促使核酸通过碱基二聚化的方式产生一些光产物,从而破坏微生物细胞中脱氧核糖核酸(DNA)和核糖核酸(RNA)的分子结构。当DNA被破坏时,核酸难以进行复制,即便复制能够进行,通常也会具有缺陷,使细菌无法存活。另外,在使用多波长的超短紫外线去照射微生物时,超短紫外线还可能影响芳香族氨基酸,进而影响蛋白的结构和功能,使细菌无法存活。
超短紫外线是一种成熟的消毒方法,可以用来杀死许多种病原体,包括导致炭疽、天花、病毒性出血热、肺鼠疫、腺鼠疫、土热症、耐药结核病、流感大流行和严重急性呼吸系统综合症等疾病的潜在生物恐怖主义制剂。
由于其对微生物的杀菌作用,紫外线的应用也已扩展到食品加工业、污水净化、通风和空调系统的消毒、房间和表面消毒等方面,也有人将其用于杀灭通过水传播的人类病原体(细菌、病毒和原生动物)。
在食品加工领域,在对鲜切水果和蔬菜进行表面消毒方面,紫外线显示出巨大的潜力,它能减缓水果和蔬菜的变质速度,延长贮藏寿命,成为二氧化钛(TiO2)和氯等化学杀菌剂的有效替代品。
紫外线灯能够有效对抗各种微生物,并且不会产生化学残留物或其它副产品,不影响水质,因此也可以用于污水处理。也有公司会在水龙头和饮水机上安装紫外线灯。
紫外线的另一个重要用途是空气消毒。多种真菌、细菌和病毒病原体可能通过空气中的飞沫进行传播,如结核分枝杆菌、流感病毒、SARS冠状病毒、曲霉菌属等军团菌,紫外线灯照射30分钟能够有效降低空气中微生物的浓度。因此除了外科手术室和微生物实验室中广泛使用的紫外灯管,在空气处理装置和通风系统中安装超短紫外线灯,也能够降低室内空气中通过空气传播的细菌、真菌和病毒的浓度。
外科手术室内空气消毒的初步成功,刺激了超短紫外线在医院的推广应用。例如,在婴儿病房及新生儿重症监护病房内设置超短紫外线灯,能够防止呼吸道感染;超短紫外线也能用于减少气管中微生物的定植和治疗呼吸相关的肺炎。
一旦了解了紫外线杀死细菌、病毒和真菌等微生物的潜力,人们就越来越有兴趣提高紫外线的利用率。但实际上紫外线杀菌在对付细菌时有两个缺陷:
一是紫外线不仅对细菌有影响,对哺乳动物细胞也有不利作用。
二是细菌的孢子对紫外线具有很强的抵抗力,这在某种程度上令人担忧。例如,枯草杆菌等芽孢杆菌的休眠孢子对紫外线辐射的抵抗力是相应生长细胞的5到50倍。
孢子之所以具有如此顽强的抵抗力,主要是由于孢子中有一种独特的DNA修复酶,称为孢子光产物裂解酶(spore photoproduct lyase,SP裂解酶)。在内生孢子萌发过程中,SP裂解酶能够特异性修复紫外线诱导的DNA损伤。细菌芽孢对诸如热、电离、紫外线和伽玛辐射、渗透压和干燥等物理损伤都具有极强的抵抗力。孢子还能保护细菌免受化学和生物消毒剂的侵害,如碘、过氧化物和烷基化剂等试剂。所以即便是粗暴的物理、化学等方法也无法除去细菌孢子。
所谓野火烧不尽,春风吹又生。因此,拓展其他更有效的杀菌方法也刻不容缓。
2 光催化杀菌技术
紫外线中的超短紫外线UVC能够在不损伤机体的情况下直接作用于各种病原体并将之杀灭,近紫外线UVA则并不具备杀菌效果,且对人体有一定的坏处。但是,当紫外线中的近紫外线UVA与一些可被光催化的介质(如二氧化钛和补骨脂)联合使用的时候,又可以起到意想不到的效果。
(1)光触媒杀菌技术
二氧化钛是一种化学性质稳定的惰性物质,在光照条件下可连续发挥抗菌作用。它主要有三种晶型:锐钛矿型、金红石型和板钛矿型。研究表明,锐钛矿酶是最有效的光催化剂,而金红石活性较低。令人惊奇的是,锐钛矿酶和金红石的混合物,或在锐钛矿酶中掺杂硫、阴离子或银等金属时,都比100%的锐钛矿酶具有更高效的光催化作用,而且对病毒的灭活效果也更好。另外,相比于块状二氧化钛材料,二氧化钛纳米颗粒灭活病原体的性能更好,研究人员将那些以纳米级二氧化钛为代表的,具有光催化功能的光半导体材料统称为光触媒。
当近紫外线UVA照射到二氧化钛上时,入射光子会激活活性氧的产生。二氧化钛光催化表面直接与细胞壁接触,使细胞壁上发生氧化损伤。最初受到氧化损伤的细胞仍然是活着的,然而,局部细胞壁的丧失使这些细胞的细胞质膜也容易受到氧化损伤,结果就是,光催化作用逐渐增加了细胞的通透性,最终导致细胞内容物流出,进而导致细胞死亡。除此之外,二氧化钛似乎也可以进入膜损伤细胞,对细胞内成分造成直接损伤,从而加速细胞死亡。
编辑:GUOmazing
↓ 点击标题即可查看 ↓
1. 物理定律告诉你:表白可能巨亏,分手一定血赚
2. 震惊!昨天你们立起来的扫把,甚至真的惊动了 NASA
3. 酒精和 84 消毒液到底能不能一块用?
4. 一次性医用口罩是怎么做出来的?如何消毒?
5. 数学好玩个球啊,这支豪门球队用一群数理博士横扫球场
6. 「测温枪」到底是怎样测出你的温度的?
7. 等量 0 度水和 100 度水混合能得到 50 度水吗?
8. 人类为什么喜欢亲吻?
9. 病毒从哪里来?
10. 一见钟情,到底靠不靠谱?