猜你喜欢
(报告出品方/作者:中航证券,张超、梁晨)
四、其他重点结构及功能材料篇对于一些具有优异功能的先进材料,往往并没有办法以具体某种成分,类别属性进行区分,因此本篇 重点介绍一些应用前景较好的重点结构及功能材料,如隐身材料、先进陶瓷材料等。
1、隐身材料——武器装备隐身的物质基础
1.1、隐身材料是军工装备隐身技术发展过程中的核心环节
隐身技术是在一定的探测环境中,通过缩减、控制目标的各种特征信号,降低其可探测性,使其难以 被发现、跟踪、识别和攻击的综合性技术。隐身技术能有效地提高武器装备的生存、突防能力和作战效能。 武器装备的隐身能力可以通过外形设计、使用隐身材料以及电子干扰等手段来实现。外形设计是通过武器 装备的外形设计尽量降低其雷达散射截面,但因受到战术技术指标和环境条件的限制,进行理想设计有相 当大的难度,因此隐身材料成为隐身技术的重要技术途径,隐身材料的研制和应用也成为评价一个国家隐 身技术先进性的主要指标。
隐身材料的功能或者分类主要针对探测技术而言,可分为雷达隐身、红外隐身、可见光隐身、激光隐身、声隐身、磁隐身以及多频谱隐身等。对于目前的主要作战装备而言,重点是雷达隐身和红外隐身。
①雷达隐身材料
雷达隐身材料主要用于对抗雷达探测系统,通过吸收电磁波能量,降低回波强度实现雷达隐身。雷达 隐身材料按照成型工艺分为涂覆型吸波材料和结构型吸波材料两类;按材料损耗机制,可分为磁介质型隐身材料、电阻型隐身材料和电介质型隐身材料三类;按吸收原理,可分为干涉型吸波材料和吸收型吸波材料等。
②红外隐身材料
红外隐身材料以降低目标表面红外辐射特征为目的,使得红外成像探测无法识别目标体。可通过两种 途径,一种是改变物体的红外辐射特性,即控制物体表面的发射率;另一种是改变物体的红外辐射强度, 即控制物体表面的温度。根据隐身原理不同,红外隐身材料可以分为低发射率红外隐身材料、控温材料和 光谱转换材料三类。低发射率红外隐身材料通过抑制目标表面发射率实现红外隐身;控温材料主要通过降 低目标表面的温度,从而降低红外辐射强度实现隐身;光谱转换材料主要是将目标 3~5μm、8~14μm 的 红外辐射转移到大气红外窗口之外被大气吸收,从而实现隐身。对于飞行器来说,主要是红外低发射率材料。
1.5、小结
隐身材料是具有隐身功能材料的一种统称,产品形态主要可分为涂层材料和结构材料两种,下游具体 应主要是国防军工领域。随着武器装备侦查手段以及现代电子战的快速发展,新型武器装备对应的雷达、 红外隐身材料应用无论是从深度还是广度都有所提升。
2、陶瓷材料——军工结构和电子信息的关键材料2.1、陶瓷材料是无机非金属材料的重要成员,军工应用主要集中在结构材及电子器件方面
陶瓷材料是指用天然或合成化合物经过成形和高温烧结制成的一类无机非金属材料。它是继金属材料, 非金属材料之后人们所关注的无机非金属材料中最重要的材料之一。具有性能稳定、强度高、硬度高、耐 高温、耐腐蚀、耐酸碱、耐磨损、抗氧化等优点。缺点是易碎性,但在不断改性的过程中,已经得到很大 的改善。
陶瓷材料广义上可分为传统陶瓷和特种陶瓷,传统陶瓷是指采用天然原料如长石、粘土和石英等烧结 而成,是典型的硅酸盐材料,这类陶瓷广泛应用于生活器皿、建筑等方面,属于低端陶瓷材料,因此我们 这里讨论的陶瓷材料特指先进陶瓷,又叫精细陶瓷、特种陶瓷或新型陶瓷。 先进陶瓷材料按其性能及用途可分为两大类:结构陶瓷和功能陶瓷。功能陶瓷在先进陶瓷中约占 70% 的市场份额,其余为结构陶瓷。
陶瓷基复材在结构材料中最具前景。陶瓷基复材作为结构材料在保留陶瓷本身优点的同时,有效的解 决了其脆性问题。1987 年美国能源部开始实施陶瓷基复合材料的研发计划,NASA 等单位也投入大量人力 和经费。仅 1992 年美国投入陶瓷基复合材料应用研究的经费高达 3500 万美元。陶瓷基复合材料的潜在应用领域广泛,包括宇航、国防、能源、汽车工业、环保、生物、化学工业等,在未来的国际竞争中将起关 键的作用。发达国家投入巨资进行研究,美国和西欧各国侧重于航空和军事应用,日本则力求把它应用在 工业上。
在各种陶瓷基复合材料中,C/C 陶瓷基复合材料(即在 C/C 复材中加入陶瓷做成的二元基体复合材料, 常用 C/C-SiC)拥有最大的市场份额,并且预计会成为全球陶瓷基复合材料市场增长中增长率最高的材料。 由于 C/C 陶瓷基复合材料具有轻质、高摩擦系数以及良好的耐高温性能,它被认为是航空和汽车领域制动 系统的优选材料。此外 SiCf/SiC 复材(增强纤维及基体均为陶瓷的复合材料)目前已得到较成功的应用, 主要应用在航空航天发动机内的高温部件,如叶片、燃烧室涡形管等构件。 航空航天是陶瓷基复合材料最大的细分应用市场,占总体的 43%左右。随着我国高推重比航空发动机 的定型、空间飞行器技术的迫切需求和快速发展,陶瓷基复合材已经在军用、民用领域展现出巨大的发展 潜力。
2.5、小结
先进陶瓷材料由于其耐高温以及独特的电学特性广泛被应用于结构材料以及电子领域。作为结构材料, 通过纤维补强形成的陶瓷基复合材料,克服了其脆性的弱点,目前我国在某些尖端先进陶瓷的理论研究和 实验水平已经达到国际先进水平,可成熟应用于战略导弹、火箭发动机热结构件以及各类卫星天线窗的保 护框等方面,在电子陶瓷方面,日本依靠其成熟的技术仍然在民用陶瓷电容器保持领先,我国民用陶瓷电 子产品在成本及质量控制方面有待提高,而随着武器装备信息化的加速,我国陶瓷电容器在军工领域的需 求不断增大,随着技术的成熟未来有望带动军转民的发展。总体而言国内先进陶瓷总体水平与国外相比还 存在一定的差距。
(本文仅供参考,不代表我们的任何投资建议。如需使用相关信息,请参阅报告原文。)
精选报告来源:【未来智库】。未来智库 - 官方网站