猜你喜欢
关键词:卡脖子技术材料,半导体芯片,新能源,高分子材料,国产替代材料
二泉映月音乐:阿炳
引言:聚硅氮烷(PSZ)是一类主链以Si-N键为重复单元的无机聚合物。聚硅氮烷可分为有机聚硅氮烷(OPSZ)和过水聚硅氮烷(PHPS)两大类。由于其结构特殊,聚硅氮烷高温条件下可转化为SiCNO、SiCN或二氧化硅陶瓷等,固化后硬度可达8H以上。聚硅氮烷具有优异的耐腐蚀、抗氧化、耐辐射、耐高温性能,在航空航天、半导体、光伏电池、耐高温涂层、陶瓷材料、树脂材料等领域应用广泛。硅氮烷聚合物在高温条件下可转化为 SiCN,SiCNO 或者二氧化硅陶瓷,因而硅氮烷聚合物在耐高温涂层方面具有重要应用价值。
作为一种新型尖端材料,聚硅氮烷在航天航空、半导体、耐高温涂层、陶瓷材料等领域具有广阔应用前景,未来随着终端产业发展,聚硅氮烷市场将保持高速增长态势。
电池包壳体设计要求电池包壳体作为电池模块的承载体,对电池模块的安全工作和防护起着关键作用。其外观设计主要从材质、表面防腐蚀、绝缘处理、产品标识等方面经行。要满足强度刚度要求和电器设备外壳防护等级IP67设计要求并且提供碰撞保护,箱内电池模块在底板生根,线束走向合理、美观且固定可靠。
1、一般要求
(1)具有维护的方便性。
(2)在车辆发生碰撞或电池发生自燃等意外情况下,宜考虑防止烟火、液体、气体等进入车厢的结构或防护措施。
(3)电池箱应留有铭牌与安全标志布置位置,给保险、动力线、采集线、各种传感元件的安装留有足够的空间和固定基础。
(4)所有无极基本绝缘的连接件、端子、电触头应采取加强防护。在连接件、端子、电触头接合后应符合GB 4208-2008防护等级为3的要求。
2、外观与尺寸
(1)外表面无明显划伤、变形等缺陷、表面涂镀层均匀。
(2)零件紧固可靠、无锈蚀、毛刺、裂纹等缺陷和损伤。
3、机械强度
(1)耐振动强度和耐冲击强度,在试验后不应有机械损坏、变形和紧固部位的松动现象,锁止装置不应受到损坏。
(2)采取锁止装置固定的蓄电池箱,锁止装置应可靠,具有防误操作措施。
4、安全要求
(1)在试验后,蓄电池箱防护等级不低于IP55。
(2)人员触电防护应符合相关要求。
在完成整个动力电池系统的设计后,制作好的动力电池系统必须经过台架性能测试,验证是否符合设计要求,在经过装车试验,对系统进行改进和完善。相关行业标准如下:
☞铝合金壳体:汽车动力电池包采用铝合金材料具有易加工成型、高温耐腐蚀性、良好的传热性和导电性的特点。铝合金壳体(除壳盖外)可一次拉伸成形,相对于不锈钢,可以省去盒底焊接工艺,在进行焊接时就不会出现因为金属元素烧损而导致寒风质量下降等问题。此外,铝合金壳体还有以下四大优势。
聚硅氮烷是一类主链以Si—N键为重复单元的无机聚合物。自1921年A. Stock等人首次报道采用氨气氨解氯硅烷制备聚硅氮烷以来 ,研究者对聚硅氮烷的研究已持续了近一个世纪。相比其类似聚合物—主链以Si—O链为重复单元的聚硅氧烷,聚硅氮烷的开发和应用逊色很多。其主要原因有两个:一是大部分聚硅氮烷相对活泼,与水、极性化合物、氧等具有较高的反应活性,因此保存和运输较困难;二是聚硅氮烷的制备方法尚不完善,并不能有效地对反应产物进行控制,反应产物复杂,摩尔质量偏低。尽管如此,经过近一个世纪的发展,已开发出商业化聚硅氮烷产品,如瑞士Clariant、日本Teon、英国AZ Electronic materials的全氢聚硅氮烷;美国KiON牌号为“ceraset”的聚脲硅氮烷、聚硅氮烷;另外,美国Dow Corning公司、德国Bayer也有部分聚硅氮烷的产品;在国内,中国科学院化学研究所 开发出PSN系列聚硅氮烷。聚硅氮烷的成功商品化推动了其在各方面的应用研究,其中作为陶瓷前驱体的研究最为丰富。
三
硅氮烷聚合物的相关研究
聚硅氮烷作为陶瓷前驱体
通过裂解聚合物得到陶瓷材料的方法相比传统的无机粉末烧结法具有独特的优势,如:可利用聚合物的成型方式制备陶瓷材料,工艺性好;通过聚合物分子设计能得到化学组成和结构不同的陶瓷材料。
(1)用于制备陶瓷纤维
20世纪年代,聚合物前驱体制备SiC纤维的兴起激起研究者通过聚硅氮烷制备Si3N4、Si3N4/ SiC或SiCN纤维的兴趣。目前,研究者已对聚硅氮烷的可纺性、纺丝工艺、不熔化处理方式、裂解方法等有了较深刻的认识,但之前的研究集中在熔融纺丝上。采用液体聚硅氮烷制备纤维需要聚硅氮烷具有较高的黏度以便于纺丝;同时黏度又不可随温度变化太快,否则工作窗口太窄。
(2)用于制备块体陶瓷材料
采用聚合物前驱体法制备陶瓷材料具有独特的优势,然而这样得到的陶瓷却不尽完美:一方面,在裂解过程中,部分有机基团脱除,产生气体,使材料内部产生很多孔;另一方面,裂解过程中材料出现收缩,严重时会出现材料开裂、翘曲变形等情况。为此,研究者采用不同的方式,如热压/裂解、液相烧结、预裂解/粘合/裂解、压力浇铸 (pressure casting)等对聚硅氮烷进行固化裂解,从而得到缺陷相对较少的陶瓷材料。热压/裂解法是将聚硅氮烷固化物研磨成固体粉末,然后热压成型,再在惰性气氛中裂解,得到无定型SiCN陶瓷材料。
(3)用于制备陶瓷涂层
对于用有机聚硅氮烷制备陶瓷涂层的研究已取得了很多有意义的结果。F. Kerm [3] 等人设计了一套对碳纤维表面进行涂层处理的中试装置,从纤维的表面处理、浸渍聚硅氮烷溶液、到涂层固化和裂解,可连续进行,实现了10 000 m碳纤维的连续化处理。在此工艺过程中,聚硅氮烷浓度非常重要,太低 (聚硅氮烷质量分数小于2 %)不能实现对纤维的 全面保护,太高(聚硅氮烷质量分数大于10% )则造成涂层碎裂。但聚硅氮烷处理陶瓷、金属表面时要求浓度较高 ( 聚硅氮烷质量分数20% ~ 60 % ),以掩盖基底表面较大的缺陷;在提拉 ( 浸涂)和旋涂工艺中,通常还会采取多次涂覆的方式。
(4)用于制备多孔陶瓷材料
多孔陶瓷在过滤、催化、隔热、吸附等方面具有的广泛应用,聚硅氮烷较多的改性方法和较好的成型能力使其可采取多样的成孔方式制备多孔SiCN陶瓷材料。
(5)用于制备陶瓷MEMS组件
(6)用于制备复合材料
聚硅氮烷作为树脂材料
聚硅氮烷本身虽然是一种聚合物树脂,但相比其作为陶瓷前驱体的研究而言,对其作为树脂的研究则较少。在这方面,中科院化学研究所做了一些尝试,包括直接采用聚硅氮烷作为树脂基体,以及用于改性烯丙基酚醛、环氧树脂、硅树脂等,取得了一系列有意义的结果 。
可UV固化低粘度耐高温1800C聚硅氮烷涂层---8812
一
低粘度100%固含量聚硅氮烷树脂介绍
三
应用领域
五
注意事项
以上部分资料转载网络平台,文章仅用于交流学习版权归原作者。如侵权请告知立删。