猜你喜欢
(报告出品方/作者:中信证券,华鹏伟、林劼、华夏)
一、技术迭代推动降本增效,N 型电池技术发展提速晶硅电池技术是以硅片为衬底,根据硅片的差异区分为 P 型电池和 N 型电池。其中 P 型电池主要是 BSF 电池和 PERC 电池,N 型电池目前投入比较多的主流技术为 HJT 电池和 TOPCon 电池。
1)P 型电池,传统单晶和多晶电池主要技术路线为铝背场技术(Al-BSF), 目前主流的 P 型单晶电池技术为 PERC 电池技术,该技术制造工艺简单、成本低,叠加 SE(选择性发射技术)提升电池转换效率;
2)N 型电池,随着 P 型电池逐渐接近其转换 效率极限,N 型将成为下一代电池技术的发展方向。N 型电池具有转换效率高、双面率高、 温度系数低、无光衰、弱光效应好、载流子寿命更长等优点,主要制备技术包括 PERT/PERL、 TOPCon、IBC、异质结(HJT)等。
技术迭代推动提效降本,PERC 电池产能占 86%
过去五年,PERC 代替 Al-BSF 成为目前主流电池技术。P 型电池技术主要经历了 Al-BSF(传统铝背场)到单面 PERC 再到双面 PERC 技术的发展路线。根据 CPIA 数据, 2015 年之前,铝背场电池是主流的电池技术,市占率一度超过 90%,2015 年开始随时 PERC 电池技术的推广,BSF 电池市占率开始下降并在 2020 年市占率降至 8.8%。PERC 电池技术的推广主要得益于单晶硅片的大规模推广,设备国产化率快速提升等因素。根据 CPIA数据,2020 年新建量产产线仍以 PERC 电池为主,PERC 电池市场占比达到 86.4%。
1) Al-BSF 电池技术。为改善太阳能电池效率,在 P-N 结制备完成后,在硅片的背 光面沉积一层铝膜,制备 P 层,称为铝背场电池。铝背层主要进行表面钝化,降 低背表面复合速率,增加光程,提升效率。但红外辐射光只有 60-70%能被反射, 产生较多的光电损失,在转换效率方面有明显的局限。
2) PERC 电池技术。通过在电池背面附上介质钝化叠层三氧化二铝和氮化硅作为背 反射器,增加长波光的吸收,同时增大 P-N 极间的电势差,降低电子复合,提升 光电转换效率,还可以做成双面电池。随着工艺成熟,设备国产化和成本降低, 逐渐成为市场主流电池技术。
Al-BSF 改造为 PERC 产线并不复杂,但效率提升明显。从产线改造角度看,铝背场 电池技术的生产工艺主要包括清洗制绒、扩散制结、蚀刻、制备减反射膜、印刷电极、烧 结及自动分选七道工序和关键设备,而 PERC 电池技术的生产工艺无需另开产线,只需在 铝背场基础上,增加钝化叠层和激光开槽这两道工序即可完成,所需设备包括增加 PECVD 和激光开槽设备,相关设备也均实现国产化。而从效率提升角度看,根据 CPIA 数据,截 至 2020 年,PERC 电池平均转换效率 22.8%,而传统铝背场的转换效率则不足 20%,效 率提升是加速 PERC 产能占比提升的核心因素之一。
PERC 技术产业化时间不长,电池效率提升速度较快。从 PERC 电池技术的发展到成 为主流路线的时间并不长,核心原因在于电池技术快速发展推动行业的降本提效。从 1989 年 PERC 电池技术的首次提出,到 2010 年进行背面/叠层钝化改造推动大尺寸电池的产业 化进程,产业界用了 10 年时间将其效率提升和成本下降发挥到了极致,成为目前全球电 池的主流技术。隆基乐叶在2019年发布的PERC电池技术效率记录为24.06%,目前PERC 电池的量产效率已经突破 23%。
单晶 PERC 电池平均量产效率超 22.8%,已逐渐接近 24.5%极限效率。从目前电池 效率看,隆基 24.1%的转换效率已经接近 PERC 电池极限效率,电池厂商研发重心已经逐 步转向新的技术,PERC技术正式进入变革后周期。为了进一步提升PERC电池转换效率, 在传统的 PERC 电池工艺基础上不断增加新的工艺,包括 SE 技术优化、多主栅电极、氧 化层增强钝化、背面碱抛及光注入或电注入再生等技术工艺的改进。通过技术工艺的不断 改进,目前单晶 PERC 电池的产业化平均效率达到 22.8% ,已经在逐渐接近其极限效率。
三、HJT:国产化降本空间大,有望成下一代主流技术HJT 电池优势显著,正处在产业爆发期
HJT 电池技术经历 30 年的发展,目前正处在行业爆发期。自 1974 年 Walter Fuhs 首次提出 a-Si 和晶体硅融合的 HJT 结构起,到 1989 年三洋获得专利,HJT 电池技术经历 了较长时间的技术垄断,期间全球各个实验室在进行积极研发。直至 2010 年,三洋核心 专利过期,技术垄断终于打破,国内外开启了 HJT 电池技术效率提升的工业化探索,并于 2017 年开始进行 100MW 级的产业化试生产线建设。过去两年多家公司进入试生产线环节 并加大 HJT 电池产业化的投资力度,HJT 电池技术迎来快速发展期。
HJT 电池,即非晶硅薄膜异质结电池,是由两种不同的半导体材料构成异质结。HJT 电池主要由 N 型硅片(c-Si)及基极,在正面、背面都采用非晶硅薄膜(a-Si)形成异质 结结构,正面使用本征非晶硅薄膜和 P 型非晶薄膜沉积形成 PN 异质结,背面同样使用本 征非晶硅薄膜和 N 型非晶薄膜形成 N 背场,双面 TCO 膜及双面金属电极。HJT 电池正 背面结构对称,适合于双面发电,较 PERC 电池具有转换效率高、双面率高、温度系数低、 无光衰、弱光效应、载流子寿命更长等优点。
优势一:双面率高,光电转换效率高。从目前转换效率看,HJT 电池平均量产效率均 在 24% ,安徽华晟最新的量产批次平均效率 24.7%,最高效率达到 25.06%,通威最高 实现了 25.18%,效率潜力明显优于 PERC 电池。光伏电池的未来发展趋势,向更高效率 和更大降本空间的 N 型电池发展,HJT 是中期最适合的发展方向之一,未来也有望实现与 钙钛矿的叠层产生更高的转换效率。HJT 是双面对称结构,双面电池的发电量要超出单面 电池 10% ,目前双面率已经达到 95%,相比其他工艺路线有明显的发电增益优势。根据 Solarzoom 数据,HJT 电池每 W 发电量较双面 PERC 电池高出 2.0~4.0%。
优势二:工艺流程更加简化,提效降本空间更大。相比 PERC 的 8 道和 TOPCon 的 10 道工艺,HJT 仅需 4 道工序即可完成,从生产效率和产品良率上更有优势和提升空间, 而良率也是目前 TOPCon 产业化遇到的最大瓶颈。同时,HJT 是在<250℃低温环境下制 备,相比于传统 P-N 结在 900℃高温下制备,一方面有利于薄片化(未来可实现 100μm 厚度)和降低热损伤来降低硅片成本,另一方面因能源节约等因素非硅成本也表现更优。
优势三:光衰减低 温度系数低,稳定性强。HJT 电池通过良好的镀膜工艺来降低界 面复合改善 TCO 层及 Ag 接触性能。测试发现 HJT 电池的 10 年衰减小于 3%,25 年仅下 降 8%,导致全生命周期每 W 发电量的增益效果明显。从温度系数角度看,能减少太阳光 带来的热损失。光伏系统实际工作的温度是要高于实验室的标准室温,而 HJT 电池的温度 系数-0.25%,相比 PERC的温度系数-0.37%,因此每W 发电量较 PERC电池平均高3% 。
2) 通威股份:公司目前积极开展包括 HJT、TOPCON 等有可能成为下一代量产主流 技术路线的中试与转化。根据公司公告和披露数据,3 月底 200MW 的 HJT 中试 线试平均效率达 24.3%,最高效率达 25.18%,预计 2021Q2-Q4 的分季度效率目 标分别为 24.6%、24.8%、25%,中试线平均良率达 97.84%,体现出良好的设备 生产稳定性。同时,还将建设 1GW 的 HJT 中试线于下半年投产。
(本文仅供参考,不代表我们的任何投资建议。如需使用相关信息,请参阅报告原文。)
精选报告来源:【未来智库官网】。